NIU Scientists Discover Simple, Green And Cost-Effective Way To Produce High Yields Of Highly Touted Graphene

SMU Chemistry Professor John Maguire is part of a research team that has discovered a simple method for producing high yields of graphene, a possible replacement for silicon as the technological fabric of the future.

Scientists at Northern Illinois University say they have discovered a simple method for producing high yields of graphene, a highly touted carbon nanostructure that some believe could replace silicon as the technological fabric of the future.

The focus of intense scientific research in recent years, graphene is a two-dimensional material, comprised of a single layer of carbon atoms arranged in a hexagonal lattice. It is the strongest material ever measured and has other remarkable qualities, including high electron mobility, a property that elevates its potential for use in high-speed nano-scale devices of the future.

In a June communication to the Journal of Materials Chemistry, the NIU researchers report on a new method that converts carbon dioxide directly into few-layer graphene (less than 10 atoms in thickness) by burning pure magnesium metal in dry ice.

Other members of the research group publishing in the Journal of Materials Chemistry include former NIU physics postdoctoral research associate Jun Lu, NIU undergraduate student Jennifer Skrabutenas, NIU Chemistry and Biochemistry Professor Tao Xu, NIU Physics Professor Zhili Xiao and John A. Maguire, a chemistry professor at Southern Methodist University.

The work was supported by grants from the National Science Foundation, Petroleum Research Fund administered by the American Chemical Society, the Department of Energy and Robert A. Welch Foundation.

Read the full story.

# # #