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Middle school students bring with them to the classroom powerful, informal resources for 

reasoning about mathematical ideas. However, little research has examined how these resources 

can interact with or support skills of mathematical justification. Here, we explore how middle 

school students consider inductive strategies – the use of examples in proof – when confronted 

with conjectures. We discuss ways in which these students might reason about mathematical 

objects like numbers and shapes strategically as they test examples. We argue that critical to 

such strategic reasoning is flexible application of mathematical and everyday ways of knowing. 
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Students bring with them to the mathematics classroom powerful intuitive ways of reasoning 

based on their everyday experiences interacting with the world. An important goal in 

mathematics education has been to find ways to leverage these resources or “funds of 

knowledge” (Moll & Gonzalez, 1997) to support mathematics learning. However, this search has 

proven to be problematic. Students not only have trouble applying their “school math” 

knowledge to complex, situated real world problems (e.g., Masingila, Davidenko, & Prus-

Wisniowska, 1996; Walkington, Sherman, & Petrosino, 2012), but they struggle to productively 

use knowledge from their everyday experiences in school-based tasks (e.g., Reusser & Stebler, 

1997; Walkington, Nathan, Wolfgram, Alibali, & Srisurichan, in press). A situated perspective 

on learning acknowledges that the interplay between the practices valued in school and everyday 

activity is complex, and that these two sets of practices will not always overlap. However, recent 

work has uncovered ways for students’ concrete, situated experiences to support the learning of 

mathematical formalisms (e.g., Walkington & Sherman, 2012). 

One area in which the interaction between everyday experience and formal mathematical 

knowledge has not been well-examined is mathematical justification. Here, we define 

justification or proving as “the process employed by an individual to remove or create doubts 

about the truth of an observation,” and emphasize that this process is often based on intuition, 

internal conviction, and necessity (Harel & Sowder, 1998, p. 243). The importance of the 

construction and evaluation of mathematical arguments is accentuated in both the Common Core 

and NCTM standards (CCSS, 2010; NCTM, 2000). But how are children’s intuitive ways of 

reasoning important when considering mathematical justification, which has been traditionally 

characterized as a formal and disembodied chain of axiomatic, deductive statements?  

Recent research has revealed the inductive or example-based reasoning strategies that 

children use when considering mathematical conjectures (Knuth et al., 2011). For instance, when 

presented with the conjecture “the sum of any two even numbers is even,” a student might test 

different even numbers, like 2 and 20. Some studies have suggested that this kind of reasoning 
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might allow students develop more general arguments (Knuth et al., 2011). Here we will 

examine how students’ everyday and mathematical knowledge interacts with their evaluation of 

example-based justifications. We argue that students must navigate along a learning continuum 

as they gain expertise with mathematical arguments, which ultimately leads to flexible and 

appropriate application of everyday and mathematical knowledge. Gaining an understanding of 

this continuum, of the ways in which students think about the nature of evidence in inductive 

justification, may help mathematics educators in better supporting students’ learning to prove. 

Theoretical Framework 

Use of example objects in justification  
Many of the problems people face in life resist formal solution. There is no deductive proof 

for beliefs about friends, nor a valid algorithm for picking a spouse. Instead people must employ 

inductive reasoning strategies. Some of the most well studied inductive strategies in the cognitive 

science literature are example-based (see Feeney & Heit, 2007). One way to decide if a person 

will be a good friend is to compare them to others. But which others? Children and adults 

employ a number of strategies for selecting good examples in their everyday lives, strategies that 

often are in line with formal principles of inductive inference. 

In mathematics, students also tend to use inductive reasoning when confronted with 

conjectures (Chazan, 1993; Knuth et al., 2011; Harel & Sowder, 1998). Such reasoning has 

sometimes been identified as problematic because students may use only examples, without 

moving towards more powerful general arguments. However, examples may still play a critical 

role in understanding conjectures and constructing more general justifications. For instance, 

mathematicians use examples as tools when confronted with conjectures (Alcock, 2004). Expert 

mathematicians (N = 133) indicated they use examples to verify and understand conjectures, 

generalize from examples to a proof, and  seek counter-examples or try to “break” the conjecture 

(Lockwood et al., this volume). Examples play an important role in the development of proofs. 

Typicality and example choice in non-mathematical and mathematical domains 

In scientific domains, three principles of example selection (see Osherson et al., 1990) have 

been identified as useful when drawing conclusions about a class or type: quantity - more 

examples are better than fewer, diversity - a wide variety of examples are better than a set of very 

similar examples, and typicality - generic or ‘average’ examples are better than special or ‘weird’ 

examples. Thus in trying to decide whether all birds have hollow bones, one would want to 

check many birds, a diverse set of birds, and relatively typical birds. Here we focus on typicality 

- a typical example shares properties with many members of its class and has few distinctive 

properties. One challenge in developing accounts of example-based inference is identifying 

which features are used to compute typicality. In science, people have robust intuitions about 

features that are ‘biologically relevant.’ That cats and goldfish are both kept as pets does not 

seem relevant in determining their biological relatedness. However, untangling everyday notions 

of typicality from typicality based on properties of mathematical objects may be more difficult.  

In previous work, we found it useful to distinguish two types of mathematical typicality 

(Williams et al., 2011). The everyday typicality of an object is how common it is in everyday life 

– i.e., how many experiences a person has with objects of that kind in their day-to-day activity. 

The mathematical typicality of an object is how typical it is when its mathematical properties are 

considered in relation to the properties of all objects of that type. The number “0” would be a 

mathematically atypical number because it has properties that no other integers share (e.g., 

additive identity). The number 322 might be a typical number in a mathematical context because 

it does not have many properties that make it distinct from the set of whole numbers. Middle 



school mathematics is an interesting site for exploring these two types of typicality, as many of 

the objects that are highly atypical mathematically (e.g., numbers like 0 or 1) are highly typical 

in everyday life. Students may struggle to reconcile these two different conceptions of typicality. 

But do typicality judgments really matter when considering mathematical justifications? 

When the expert mathematicians (N = 133) were asked how they choose examples when 

exploring conjectures, many responses referenced the typicality of their examples. They reported 

choosing common examples with no special properties or generic or general examples, unusual, 

obscure, or “tricky” examples, examples with special properties, and examples that are boundary 

cases (Lockwood et al., this volume). These mathematicians seemed to have found ways to use 

typicality strategically – to allow typicality judgments to support and inform their exploration of 

mathematical conjectures. But what about middle school students? Do they consider typicality 

when exploring conjectures with examples, and if so, what type of typicality? 

We presented middle school students (N = 20) with conjectures about numbers, and students 

reported purposefully varying the typicality of the examples they chose when testing conjectures. 

Students reported trying to test both typical and atypical numbers, or trying to test unusual 

numbers to see if the conjecture would hold (Cooper et al., 2011). Students’ reports of what 

made a number typical varied – some were attuned to whether the number was prime or the 

relative size of the number, while others identified typical numbers based on their everyday 

experiences. Overall, it seemed that students were reasoning strategically about the typicality of 

their examples. In the present study, we implement a large-scale survey to assess how students 

use mathematical and everyday typicality when considering examples in justification.  

Research questions 

Our research questions are: 1) How do middle school students use typicality strategically 

when considering examples? and 2) How are students’ conceptions of mathematical typicality 

consistent or at odds with their everyday notions of typicality? 

There are two dimensions along which middle school students might demonstrate using 

mathematical typicality strategically. First, students might realize that conjectures that hold for 

mathematically atypical objects (i.e., objects with mathematically-special properties) may not 

hold for all objects. For instance, a conjecture holding for the number “1” may not be strong 

evidence that the conjecture would hold for all numbers, since 1 has special properties (e.g., 

multiplicative identity). However, this conception of mathematical typicality might be directly at 

odds with students’ everyday notions of typicality, because although 1 is highly atypical in a 

mathematical context, it is highly typical in students’ everyday life. Thus if typicality is used 

strategically, we might see a reversal. Students may recognize that a number like 1 is highly 

atypical in a mathematical context, despite being highly typical in an everyday context. 

 Second, students might use mathematical typicality strategically if they realize that 

superficial features of a mathematical object are not particularly important when considering 

whether conjectures that hold for that object will hold for most objects. Students might realize 

that when a parallelogram is in a non-standard orientation, this is unlikely to impact most 

mathematical conjectures in middle school mathematics. Similarly, a student might realize that 

the relative size of a number (e.g., 3 or 103) or the cultural significance of a number (e.g., 13) 

might not be particularly important. This strategic use of mathematical typicality may be at odds 

with everyday notions of typicality – in daily life, students are accustomed to seeing shapes in 

standard orientation and working with relatively small numbers, so objects that do not conform 

to these experiences might be considered atypical. Thus we argue that strategic use of typicality 

requires students to flexibly switch between their “everyday” and “mathematical” lenses. 



Methods 
A total of 475 middle school students (46% female) from a suburban middle school in a 

Midwestern state were included in the study. Students were distributed across grades 6 (144 

students), 7 (160 students), and 8 (163 students), and mathematics classes used reform texts. The 

school demographics were 48% Caucasian, 21% African American, 14% Asian, 11% Hispanic, 

and 1% Native American, with 37% low income, and 10% English Language Leaners (ELL). 

A survey was administered to all participants during their normal math classes. Each survey 

contained questions relating to two of four different domains: numbers, parallelograms, triangles, 

and birds (birds are omitted here). For each domain, students were presented with mathematical 

objects or items in that domain (e.g., a small equilateral triangle or the number “6”) and asked to 

rate each item’s typicality on a 1-7 scale in a mathematical context and in an everyday context. 

Figure 1 gives an example of the instructions students received on the survey (left) and actual 

survey items (right). Mathematical objects were selected by the researchers to either cover the 

space of possible mathematical properties in the domain (e.g., the parallelogram in Figure 1 is a 

rectangle; we also included squares, rhombi, etc.), or to be completely devoid of any property 

that would distinguish the object mathematically (e.g., a long, skinny rhomboid with no 90 

degree angles). The order of the 9 items within each context and the 2 domains was randomized. 

 

 

Figure 1: Example of questions on middle school survey 

 

Table 1: Mathematical (italics) and everyday (underline) properties entered into model 
Numbers Parallelograms Triangles 

Prime or perfect square 

Power of 2 or 10 

Multiple of 5 or 10 

Identity properties (i.e., 0 or 1) 

Relative magnitude (small or large) 

Square, rectangle, or rhombus 

Size (small, large, “skinny”) 

Orientation (standard, non-standard, 

left-leaning) 

Isosceles, equilateral, scalene 

Obtuse, acute, right 

Size (small, large, “skinny”) 

Orientation (standard, non-

standard) 

 

The data were analyzed using hierarchical linear regression models (Snijders & Bosker, 

1999) where repeated observations were nested within students nested within teachers. Three 

different models, one per domain, were fit to the data. Random effects included student, teacher, 

and which mathematical object (i.e., which specific number or shape) the question referenced. 

Fixed effects included context (Figure 1), the mathematical and everyday properties of the object 

(Table 1), and the interaction of these two terms. Properties that did not have significant main 

effects or interactions with context were removed. Fixed effects for gender and grade were not 

significant in any of the models. Mathematical and everyday properties of numbers, triangles, 

and parallelograms entered into the model are in Table 1. These properties were chosen based on 



the mathematical knowledge of a team of mathematicians, psychologists, and mathematics 

educators and former K-12 teachers, as well as based on previous results from our studies of 

inductive reasoning (Knuth et al., 2011; Cooper et al., 2011).  

Results and Discussion 

Number  

As can be seen from Table 2, across mathematical and everyday contexts, students rated 

small numbers (p < .001), numbers ending in 5 (p = .020), and powers of 10 as being more 

typical (p < .001). This suggests two ways in which students might not be considering 

mathematical typicality strategically. First, students seemed to believe that conjectures that hold 

for mathematically-special numbers, like powers of 10 or multiples of 5, would be more likely to 

hold for other numbers. From a mathematical standpoint, properties that hold for these numbers 

may be less likely to hold for other numbers. Second, students rated that conjectures that held for 

small numbers were more likely to hold for other numbers. Here, students may have been 

considering a superficial or mathematically-irrelevant feature when considering mathematical 

conjectures. In both cases, students’ everyday notions of typicality, their familiarity encountering 

small numbers, multiples of 5, and powers of 10 in their lives, may have influenced their 

mathematical notions of typicality – whether it makes sense for properties that hold for these 

numbers to hold for most other numbers. We also see no evidence of the desired reversal for 

mathematical typicality that might evidence strategic thinking. Students did not indicate that 

numbers with special properties – like prime numbers – were atypical in a mathematical context. 

Table 2: HLM analysis of students’ typicality ratings for number 

 

Estimate S.E. t p Sig. 

(Intercept) 3.61 0.46 7.70 < .001 *** 

Mathematical Context (ref.) 

   

 

Everyday Context 0.19 0.17 1.10 0.274  

Large (ref.) 

   

 

Small 0.77 0.17 4.42 < .001 *** 

Ends with 5 0.68 0.27 2.55 0.020 * 

Power of 10 1.32 0.25 5.39 < .001 *** 

Prime -0.17 0.22 -0.76 0.445  

Identity (0 or 1) -0.37 0.35 -1.05 0.298 *** 

Everyday Context: Small 0.59 0.09 6.67 < .001 *** 

Everyday Context: Prime 0.33 0.11 3.07 0.001 ** 

Everyday Context: Identity 0.55 0.16 3.44 < .001 *** 

* p < .05, ** p < .01, *** p < .001 

 

 However, looking at the interaction terms in Table 2, we do see evidence that students are at 

times using mathematical typicality strategically. First, although students rated small numbers as 

typical regardless of the context, being small had a larger impact on typicality in an everyday 

context (p < .001). This suggests that students may realize that superficial characteristics, like 

relative size, are less important when considering a number mathematically. Second, students 

found both prime and the identity numbers more typical in an everyday context (p = .001 and p < 

.001). Thus although students expressed their familiarity with these numbers by giving them high 

everyday typicality ratings, this familiarity did not inflate mathematical typicality ratings. 

Parallelograms  

Across mathematical and everyday contexts, students rated squares as being more typical 

(Table 3; p = .015). This again suggests that students might not be considering mathematical 



typicality strategically – these ratings suggest that properties that hold for squares are more likely 

to hold for other parallelograms. Students’ everyday familiarity with squares might be interfering 

with viewing a square as a mathematical object that has special properties (e.g., 90° angles). We 

again do not see evidence of the desired reversal – students do not rate mathematically-special 

parallelograms (like squares) as being less typical in a mathematical context. 

Table 3: HLM analysis of students’ typicality ratings for parallelograms 

 
Estimate S.E. t p Sig. 

(Intercept) 2.88 0.61 4.7 < .001 *** 

Mathematical Context (ref.) 

   

 

Everyday Context 0.39 0.27 1.41 0.165  

Standard Orientation 0.43 0.24 1.78 0.080  

Large (ref.) 

   

 

Small 0.19 0.55 0.34 0.710  

Leans Left -0.51 0.34 -1.52 0.134  

Square 0.88 0.34 2.58 0.015 * 

Rectangle 0.63 0.32 1.99 0.055  

Rhombus 0.57 0.40 1.44 0.154  

Everyday Context: Standard Orientation 0.49 0.11 4.49 < .001 *** 

Everyday Context: Small -1.04 0.25 -4.20 < .001 *** 

Everyday Context: Leans Left 0.52 0.15 3.48 < .001 *** 

Everyday Context: Square 0.55 0.15 3.64 < .001 *** 

Everyday Context: Rectangle 1.31 0.14 9.30 < .001 *** 

Everyday Context: Rhombus 0.56 0.18 3.14 0.001 ** 

* p < .05, ** p < .01, *** p < .001 

 

However, looking at the interaction terms, we see considerable evidence that students can use 

mathematical typicality strategically. Although students rated squares as being typical regardless 

of the context, squares were considered even more typical in an everyday context (p < .001). 

Similarly, students rated rectangles and rhombi as more typical in an everyday context (p < .001 

and p = .001). Students seemed to recognize that although these shapes were common in their 

everyday lives, this consideration should not inflate their ratings when determining whether 

properties that hold for these shapes will hold for other shapes. Students also allowed superficial 

properties of parallelograms – like size and orientation – to influence their everyday typicality 

ratings (p < .001), but not their mathematical typicality ratings. 

Triangles 

Across mathematical and everyday contexts, students found equilateral, isosceles, and 

standard orientation triangles more typical (Table 4; p = .037, p = .004, p < .001, respectively) 

and skinny triangles less typical (p = .002). This suggests that students may not be using 

mathematical typicality strategically. Students expressed that conjectures that hold for special 

triangles like isosceles and equilateral triangles are more likely to hold in general, and that 

conjectures that hold for skinny or non-standard orientation triangles, superficial considerations, 

are less likely to hold in general. Here, again, students do not seem to be differentiating between 

everyday typicality (the commonness of equilateral and isosceles triangles in their everyday life, 

and the rarity of skinny and non-standard orientation triangles) and mathematical typicality 

(whether conjectures that hold for certain triangles are likely to hold for other triangles). We also 

see no evidence of the desired reversal – students did not rate mathematically-special triangles as 

atypical in a mathematical context. However, looking at the interaction terms, students seem to 

sometimes reason strategically about mathematical typicality. Although students rated equilateral 



triangles as typical regardless of context, they were even more typical in an everyday context (p 

= .002). Further, right triangles were typical in an everyday context (p = .004), but students did 

not let everyday familiarity inflate ratings in a mathematical context. Students may realize that 

although these triangles are highly salient in their everyday experiences, this familiarity should 

not affect whether conjectures that hold for these triangles will hold for other triangles. 

Table 4: HLM analysis of students’ typicality ratings for triangles 

 
Estimate S.E. t p Sig. 

(Intercept) 4.98 0.41 12.16 < .001 *** 
Mathematical Context (ref.) 

   

 

Everyday Context 0.15 0.20 0.75 0.457  

Skinny -0.74 0.17 -4.28 0.002 ** 

Isosceles 0.63 0.17 3.64 0.004 ** 

Equilateral 0.75 0.33 2.28 0.037 * 

Acute  (ref.) 

   

 

Obtuse  -0.049 0.19 -0.25 0.794  

Right 0.20 0.27 0.75 0.453  

Standard Orientation 0.59 0.18 3.19 0.009 ** 

Everyday Context: Equilateral 0.68 0.22 3.19 0.002 ** 

Everyday Context: Obtuse -0.16 0.10 -1.56 0.124  

Everyday Context: Right 0.46 0.16 2.91 0.004 ** 

* p < .05, ** p < .01, *** p < .001 

Summary and Conclusions 

We examined whether middle school students use typicality strategically when considering 

conjectures, and found mixed results. When numbers or shapes had special mathematical 

properties, students considered them more typical in a mathematical context. However, 

properties that hold for these special objects should be less likely to hold for other objects. In 

other cases, superficial characteristics impacted whether students thought that conjectures that 

held for an object would hold for other objects. Both behaviors suggest that students might be 

conflating everyday typicality with mathematical typicality. Despite these results, students did 

sometimes distinguish mathematical and everyday contexts; they appropriately recognized the 

relevance of mathematically-special and surface-level properties in each domain. This suggests 

that students have important resources for using typicality strategically, and for differentiating 

how objects should be considered in the math classroom and everyday life. But are these 

behaviors really characteristic of mathematical expertise? We recently presented the survey to 

339 mathematicians. Initial analyses suggest that mathematicians do use typicality strategically 

in the ways we predicted, and they recognize everyday and mathematical typicality as two 

distinct entities that are often in opposition. This stands in contrast to how middle school students 

considered typicality, as they had difficulty reconciling mathematical and everyday contexts. 

Our results suggest that students must negotiate an important learning continuum regarding 

mathematical conjectures. Initially, students appear to have difficulty reconciling their 

mathematical experiences with numbers and shapes with their concrete, salient everyday 

experiences. However, expertise in mathematics is characterized by flexible application of 

formal mathematical knowledge and everyday experience, based on the features of the problem 

and the social context. Thus students should be encouraged to critically reflect on how 

mathematical objects like numbers and shapes are considered differently in the mathematics 

classroom when exploring conjectures, compared to interacting with these objects in day-to-day 

life. Our work suggests that mathematicians are able to move flexibly between each of these two 



viewpoints, and use both examples and typicality judgments as resources in their work. Strategic 

use of examples and considerations of typicality may thus be important in helping students think 

more critically about the nature of mathematical evidence and in moving students towards 

making important generalizations about why mathematical conjectures hold, both of which 

ultimately could support deductive reasoning and formal mathematical proof. 
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