Grounding Justifications in Concrete Embodied Experience:
 The Link between Action and Cognition

Tangibility for the Teaching, Learning, and Communicating of Mathematics

MAGIC Research Group
University of Wisconsin - Madison

This work was made possible through the financial support of the National Science Foundation (DRL-0816406)

Brief Framing

- Theories of embodied cognition
- Mental processes rooted in perceptual and motor systems (Wilson, 2002)
- Mathematical objects experiential, perceptionbased, and multimodal in nature (Barsalou, 1999; Lakoff \& Nunez, 2000; Landy, Brooks, \& Smout, 2012)
- Importance of action and simulated action for learning mathematical ideas (Abrahamson \& Howsin, 2010; Martin \& Schwartz, 2005; Nathan et al., 1992)
- Gesture as an instructional scaffold (Alibali et al., 2011; Alibali \& Nathan 2007)

Directed Movement

- Directed Action
(Thomas \& Lleras, 2007, 2009)
- Directing Gesture
(Goldin-Meadow, Cook, \& Mitchell, 2009)
- Directed action \& gesture can
 implicitly influence cognition

Projection

- Observed high school geometry classes ($N=17$)
- Mathematical justification difficult practice to learn
- Mathematical ideas instantiated in different contexts
- Computer lab (GSP) \rightarrow Classroom (Discussion)
- Produce cohesion of mathematical ideas using projection (reference past/future activity)
- Gesture and action critical to cohesion production

Viewpoint

- Gesturers express ideas with their bodies using different viewpoints (McNeill, 1992; Gerofsky, 2010)
- Observer: Spectator of situation, third-person
- Character: Agent in situation, first-person

Srisurichan et al., under review

Research Questions

- How are action and gesture used spontaneously to support mathematical justification?
- Is there an implicit link between action and cognition that can support mathematical reasoning?
- Can explicitly linking actions to mathematical ideas using projection support mathematical reasoning?
- What is the effect of viewpoint condition? (character vs. observer)

Participants and Procedure

- Undergraduate students $(N=107)$ enrolled in a psychology course at large Midwestern university
- Think aloud (Ericsson \& Simon, 1993) with only scripted prompts by interviewer
- Provide justifications for 2 mathematical tasks
- Prior to being given task, directed to perform bodybased actions relevant or irrelevant to solution

Environment

- Large interactive whiteboard
- Directed actions performed on images in GSP scaled to body through initial measurements

Tasks

Triangle Task

Actions

Mary came up with the following conjecture: "For any triangle, the sum of the lengths of any two sides must be greater than the length of the remaining
side." Provide a justification as to why Mary's conjecture is true or false.

Character Viewpoint

Relevant Actions

Irrelevant Actions

Observer Viewpoint

Relevant Actions

Irrelevant Actions

Tasks

Gear Task

Actions

Character Viewpoint

Relevant Actions

Irrelevant Actions

Observer Viewpoint

Relevant Actions

Irrelevant Actions

Design

- Relevant action for one conjecture, irrelevant action for other
- One set of actions from character viewpoint, other from observer viewpoint
- No participants reported being aware of connection
- Backwards projection at end of session
- Participants told that there is a connection between actions and task, opportunity to solve again

Findings

- How are action and gesture used spontaneously to support mathematical justification?
- Action and gesture used in formulating (ascertaining) and communicating (persuading) mathematical justifications (Harel \& Sowder, 1998)
- Participants "think with their bodies"
- Use action as an essential modality for mathematical communication

"If one gear was turning this way, then the spokes on it would push..."

Findings

- Is there an implicit link between action and cognition that can support mathematical reasoning?

$$
N=40
$$

Note: All participants included report not being consciously aware that there was a connection at this stage of the session

Findings

- Can explicitly linking actions to mathematical ideas using projection support mathematical reasoning?
"Oh! I see! If this was side A and this was side $B . .$. "

"They couldn't reach anything greater than $A+B$ "

Findings

- Can explicitly linking action-based interventions to mathematical ideas support mathematical reasoning?
"Oh! I see! If this was side A and this was side B..."

"They couldn't reach anything greater than $A+B$ "

$\mathrm{N}=40$

Findings

- What is the effect of viewpoint condition? (character vs. observer)

Implications

- Gesture and action play critical role in formulating and communicating mathematical justifications
- Directing students to perform relevant actions can support key mathematical insights
- Having students generate connections can be powerful, although some actions may work implicitly
- Character viewpoint, first-person embodied experience, especially effective support

References

- Abrahamson, D., \& Howison, M. (2010). Kinemathics: Exploring kinesthetically induced mathematical learning. Presentation at the 2010 Annual Meeting of the American Educational Research Association. Denver, CO.
- Alibali, M. W. \& Nathan, M. J. (in press). Embodiment in mathematics teaching and learning: Evidence from students' and teachers' gestures. Journal of the Learning Sciences.
- Barsalou, L. (1999). Perceptual symbol systems. Behavioral and Brian Sciences, 22, 577-660.
- Gerofsky, S. (2010). Mathematical learning and gesture: Character viewpoint and observer viewpoint in students' gestured graphs of functions. Gesture, 10(2-3), 321-343.
- Goldin-Meadow, S., \& Beilock, S. (2010). Action's influence on thought: The case of gesture. Perspectives in Psychological Science, 5(6), 664-674.
- Goldin-Meadow, S., Cook, S., \& Mitchell, Z. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267-272.
- Harel, G., \& Sowder, L. (1998). Students' proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, \& E. Dubinsky (Eds.), Research in collegiate mathematics education, Vol. 3, (pp. 234-283). Providence, RI: American Mathematical Society and Washington, DC: Mathematical Association of America.
- Lakoff, G., \& Nunez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.
- Landy, D., Brookes, D., \& Smout, R. (2012). Modeling abstract numeric relations using concrete notations. The 33rd Annual Conference of the Cognitive Science Society, Boston, MA.
- Martin, T., \& Schwartz, D. L. (2005). Physically distributed learning: Adapting and reinterpreting physical environments in the development of fraction concepts. Cognitive Science, 29(4), 587-625.
- McNeill, D. (1992). Hand and Mind: What Gestures Reveal about Thought. Chicago: Chicago University Press.
- Nathan, M., Kintsch, W., \& Young, E. (1992). A theory of algebra-word-problem comprehension and its implications for the design of learning environments. Cognition and Instruction, 9(4), 329-389.
- Thomas, L., \& Lleras, A. (2007). Moving eyes and moving thought: On the spatial compatibility between eye movements and cognition. Psychometric Bulletin \& Review, 14(4), 663-668.
- Thomas, L., \& Lleras, A. (2009). Swinging into thought: Directed movement guides insight in problem solving. Psychometric Bulletin \& Review, 16(4), 719-723.
- Wilson, M. (2002). Six views of embodied cognition. Psychometric Bulletin \& Review, 9(4), 625-636.

The MAGIC Research Group

Dr. Mitchell Nathan
Learning Sciences

Dr. Candace Walkington Math Education

Dr. Martha
Alibali
Psychology

Dr. Rebecca
 Boncoddo
 Psychology

Rachaya
Srisurichan
Math
Education

Libby
Pier
Learning
Sciences

Fatih
Dogan Math
Education

