
Grounding Justifications in Concrete Embodied Experience: The Link between Action and Cognition

Tangibility for the Teaching, Learning, and Communicating of Mathematics

MAGIC Research Group

University of Wisconsin - Madison

This work was made possible through the financial support of the National Science Foundation (DRL-0816406)

Brief Framing

- Theories of embodied cognition
 - Mental processes rooted in perceptual and motor systems (Wilson, 2002)
 - Mathematical objects experiential, perceptionbased, and multimodal in nature (Barsalou, 1999; Lakoff & Nunez, 2000; Landy, Brooks, & Smout, 2012)
- Importance of action and simulated action for learning mathematical ideas (Abrahamson & Howsin, 2010; Martin & Schwartz, 2005; Nathan et al., 1992)
- Gesture as an instructional scaffold (Alibali et al., 2011; Alibali & Nathan 2007)

Directed Movement

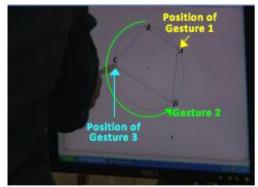
Directed Action

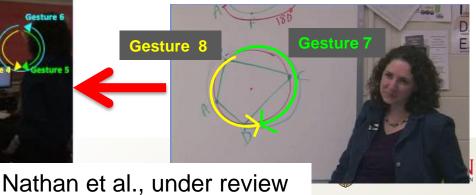
(Thomas & Lleras, 2007, 2009)

Directing Gesture

(Goldin-Meadow, Cook, & Mitchell, 2009)

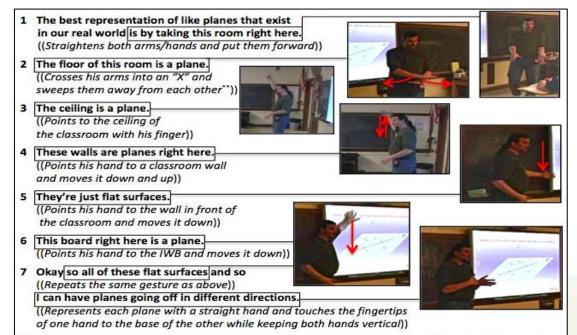
• Directed action & gesture can implicitly influence cognition





Projection

- Observed high school geometry classes (N = 17)
- Mathematical justification difficult practice to learn
- Mathematical ideas instantiated in different contexts
 - Computer lab (GSP) \rightarrow Classroom (Discussion)
- Produce cohesion of mathematical ideas using projection (reference past/future activity)
- Gesture and action critical to cohesion production



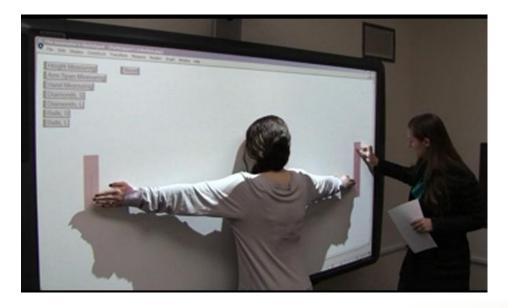
Viewpoint

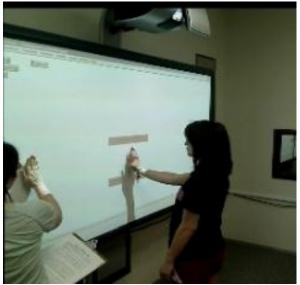
- Gesturers express ideas with their bodies using different viewpoints (McNeill, 1992; Gerofsky, 2010)
 - Observer: Spectator of situation, third-person
 - Character: Agent in situation, first-person

Srisurichan et al., under review

Research Questions

- How are **action** and **gesture** used spontaneously to support mathematical justification?
- Is there an *implicit* link between action and cognition that can support mathematical reasoning?
- Can <u>explicitly</u> linking actions to mathematical ideas using projection support mathematical reasoning?
- What is the effect of **viewpoint** condition? (character vs. observer)


Participants and Procedure


- **Undergraduate students** (*N* = 107) enrolled in a psychology course at large Midwestern university
- Think aloud (Ericsson & Simon, 1993) with only scripted prompts by interviewer
- Provide **justifications** for 2 mathematical tasks
- Prior to being given task, directed to perform bodybased actions relevant or irrelevant to solution

Environment

- Large interactive whiteboard
- Directed actions performed on images in GSP scaled to body through initial measurements

Tasks

Triangle Task

Mary came up with the following conjecture: **"For any triangle, the sum of the lengths of any two sides must be greater than the length of the remaining side."** Provide a justification as to why Mary's conjecture is true or false.

Actions

Character Viewpoint

Relevant Actions

Irrelevant Actions

Observer Viewpoint

Relevant Actions

Irrelevant Actions

Tasks

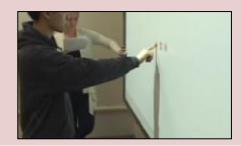
Gear Task

An unknown number of gears are connected in a chain. **If you know** what direction the first gear turns, how can you figure out what direction the last gear will turn? Provide a justification for your answer


Actions

Character Viewpoint

Relevant Actions



Irrelevant Actions

Observer Viewpoint

Relevant Actions

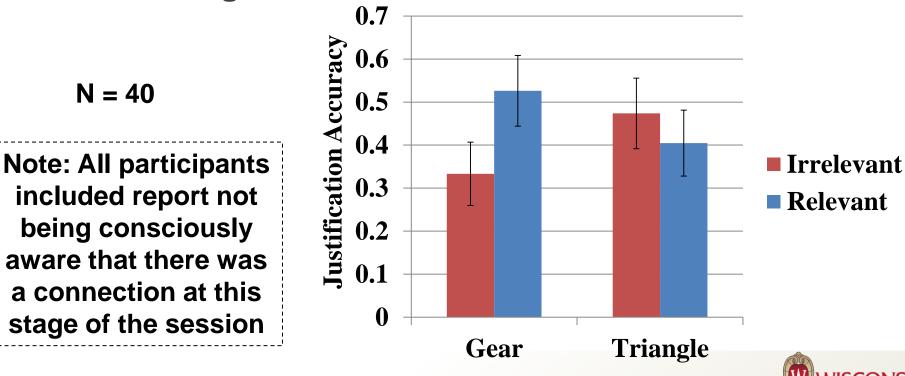
Irrelevant Actions

Design

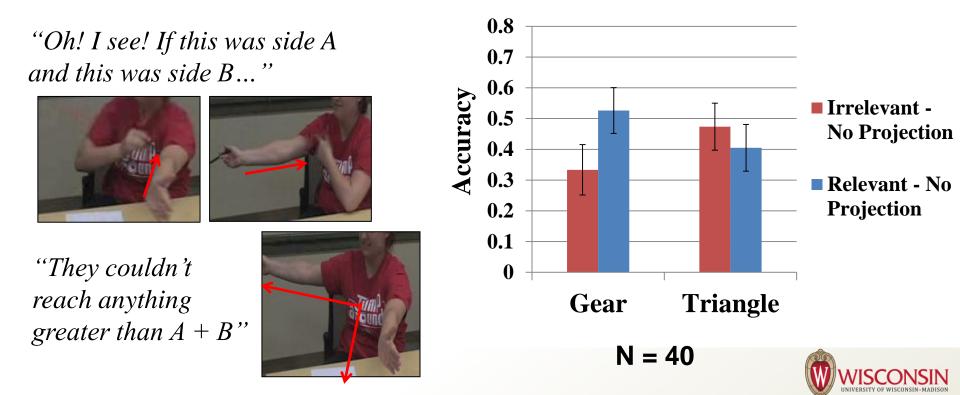
- Relevant action for one conjecture, irrelevant action for other
- One set of actions from character viewpoint, other from observer viewpoint
- No participants reported being aware of connection
- Backwards projection at end of session
 - Participants told that there is a connection between actions and task, opportunity to solve again

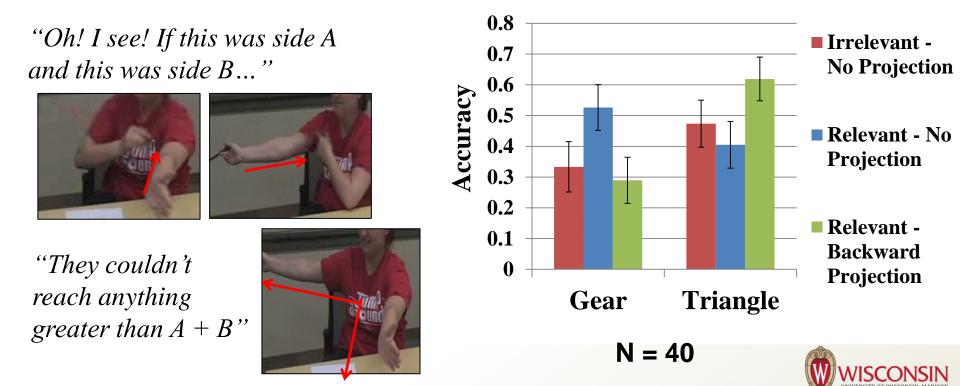

- How are action and gesture used spontaneously to support mathematical justification?
 - Action and gesture used in formulating (ascertaining) and communicating (persuading) mathematical justifications (Harel & Sowder, 1998)

"If one gear was turning this way, then the spokes on it would push..."

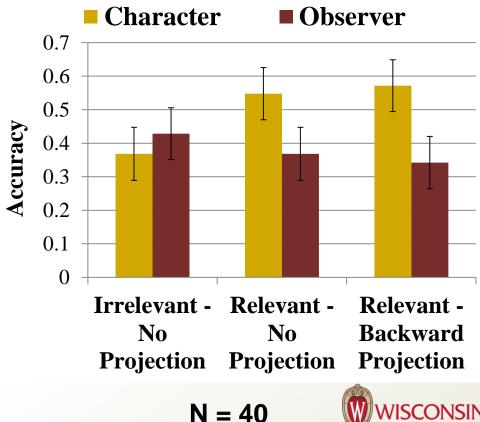

- Participants "think with their bodies"
- Use action as an essential modality for mathematical communication

(Later) "All the odd gears would be turning in the original direction."




 Is there an <u>implicit</u> link between action and cognition that can support mathematical reasoning?

• Can <u>explicitly</u> linking actions to mathematical ideas using projection support mathematical reasoning?


• Can <u>explicitly</u> linking action-based interventions to mathematical ideas support mathematical reasoning?

What is the effect of viewpoint condition? (character vs. observer)

Implications

- **Gesture** and **action** play critical role in formulating and communicating mathematical justifications
- Directing students to perform relevant actions can support key mathematical insights
- Having students generate connections can be powerful, although some actions may work implicitly
- Character viewpoint, first-person embodied experience, especially effective support

References

- Abrahamson, D., & Howison, M. (2010). Kinemathics: Exploring kinesthetically induced mathematical learning. Presentation at the 2010 Annual Meeting of the American Educational Research Association. Denver, CO.
- Alibali, M. W. & Nathan, M. J. (in press). Embodiment in mathematics teaching and learning: Evidence from students' and teachers' gestures. *Journal of the Learning Sciences*.
- Barsalou, L. (1999). Perceptual symbol systems. *Behavioral and Brian Sciences*, 22, 577-660.
- Gerofsky, S. (2010). Mathematical learning and gesture: Character viewpoint and observer viewpoint in students' gestured graphs of functions. *Gesture*, **10**(2-3), 321-343.
- Goldin-Meadow, S., & Beilock, S. (2010). Action's influence on thought: The case of gesture. *Perspectives in Psychological Science*, 5(6), 664-674.
- Goldin-Meadow, S., Cook, S., & Mitchell, Z. (2009). Gesturing gives children new ideas about math. *Psychological Science*, **20**(3), 267-272.
- Harel, G., & Sowder, L. (1998). Students' proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), *Research in collegiate mathematics education, Vol. 3*, (pp. 234-283). Providence, RI: American Mathematical Society and Washington, DC: Mathematical Association of America.
- Lakoff, G., & Nunez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.
- Landy, D., Brookes, D., & Smout, R. (2012). Modeling abstract numeric relations using concrete notations. The 33rd Annual Conference of the Cognitive Science Society, Boston, MA.
- Martin, T., & Schwartz, D. L. (2005). Physically distributed learning: Adapting and reinterpreting physical environments in the development of fraction concepts. *Cognitive Science*, 29(4), 587-625.
- McNeill, D. (1992). Hand and Mind: What Gestures Reveal about Thought. Chicago: Chicago University Press.
- Nathan, M., Kintsch, W., & Young, E. (1992). A theory of algebra-word-problem comprehension and its implications for the design of learning environments. *Cognition and Instruction*, 9(4), 329-389.
- Thomas, L., & Lleras, A. (2007). Moving eyes and moving thought: On the spatial compatibility between eye movements and cognition. *Psychometric Bulletin & Review*, **14**(4), 663-668.
- Thomas, L., & Lleras, A. (2009). Swinging into thought: Directed movement guides insight in problem solving. Psychometric Bulletin & Review, 16(4), 719-723.
- Wilson, M. (2002). Six views of embodied cognition. *Psychometric Bulletin & Review*, 9(4), 625-636.

The MAGIC Research Group

Dr. Mitchell Nathan Learning Sciences

Dr. Martha Alibali *Psychology*

Dr. Candace Walkington Math Education

Dr. Rebecca Boncoddo *Psychology*

Rachaya Srisurichan *Math Education*

Caro Williams *Math* Education

Libby Pier *Learning Sciences*

Fatih Dogan *Math* Education

