Algebraic reasoning in K-5? Yes, we can!

Lindsey Perry \& Cassandra Hatfield Research in Mathematics Education Southern Methodist University
@lindseyeperry
@cbhatfield
@RME_SMU
SMU

$8+4=\square+5$

$$
3+8=\square+6
$$

What number goes in the box to make this number sentence true?
A. 17
B. 11
C. 7
D. 5

Intl. Average: 39\% correct United States: 47\% Singapore: 85\%

Algebraic Reasoning in K-5?

Tell us one word to describe algebraic reasoning in K-5.

Go to menti.com Use code 201597

Results

Algebraic Reasoning

Recognizing and describing patterns and relationships between quantities that may be unknown

Recognizing and describing patterns and relationships between quantities NUMBER SENSE that are known

Strands of Algebraic Thinking

The study of structures in the number system, including those arising in arithmetic

The study of patterns, relations, and functions

Number Properties

- Allows students to manipulate and restructure expressions
- Commutative, associative, and the principle of inversion are frequently applied in K-5
- Develops between the ages of 4-6

Additive Composition

- Any number can be composed or decomposed
- Allows students to manipulate values in expressions
- Develops between the ages of 4-7

Why are Number Properties \& Decomposition Useful?

World Changers Shaped Here
SMU.

$8+3=\square+2$

$8+(1+2)=\square+2$ $(8+1)+2=\square+2$ $9=\square$

$44 \times 5=\square$

$(40+4) \times 5=\square$
 $(40 \times 5)+(4 \times 5)=\square$

mosem mome (in SMU

How can we promote Number Properties \& Decomposition in the classroom?

Rich tasks

Routines

Stations

Rich Tasks

-

What is a rich task?

- Multiple solutions or approaches
- Multiple entry points
- Can be used with struggling students or advanced learners
- Utilize and broaden problem solving skills

Seven birds landed in your backyard, some landed on a tree, and some are at your feeder.

Multiple solutions
Multiple approaches

- Act it out
- Draw pictures
- Write equations

How many birds might be in the tree and how many might be at the feeder?

Sandra is bringing 4 pumpkins to school for the fall fair. She has small, medium, and large pumpkins. How many of each size could Sandra bring to school?

Are there multiple ways?
Can you prove you have found each possible solution?

Routines

-nemmemer SMU

What is a routine?

- Whole class structured activity that gives students the opportunity to develop knowledge over time
- Encourages teacher-student discourse and student-student discourse
- Takes 8-10 minutes
- A way to open a lesson

Goals of a routine

- Develops intuition about numbers and their relationships
- Supports fluency and flexibility
- Develops students' ability to engage in the Mathematical Process standards:
- (D) Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
- (E) create and use representations to organize, record, and communicate mathematical ideas.
- (F) analyze mathematical relationships to connect and communicate mathematical ideas; and
- (G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

Routines

- Number of the Day
- Number Talks
- Comparing expressions

Number of the Day

- Choose a number or representation
- Possible Questions
-How many do you see?
- How do you know how many dots there are?
- "Tell me something about
- Encourage discourse and multiple strategies

$$
9=4+4+1
$$

Number of the Day

- Choose a number or representation
- "Tell me something about J
- Encourage discourse and multiple strategies

Number of the Day

- Choose a number or representation
- "Tell me something about J
- Encourage discourse and multiple strategies

$9=3+2+2+1+1$

SMU

Number of the Day

- Choose a number or representation
- "Tell me something about
- Encourage discourse and multiple strategies

$$
\begin{aligned}
& 9=4+4+1 \\
& 9=5+2+2 \\
& 9=3+2+2+1+1
\end{aligned}
$$

Number of the Day

- Choose a number or representation
- "Tell me something about 3
- "Write as many ways as you can to make \qquad
- Encourage discourse and multiple strategies

120

Number of the Day

Add constraints:

- Describe 120 using addition
- Describe 120 using multiplication

120

- Use representations to show 120
- Write as many expressions as you can using 10s and is

Number of the Day

- Choose a number or representation
- "Tell me something about J
- Encourage discourse and multiple strategies

Routines

- Number of the Day
- Number Talks
- Comparing expressions

Number Talks

- Select a number string of related problems
- Show one problem and have students solve mentally
- Discuss
- Continue showing problems individually and discussing

1003-7

Number Talks
 $1003-3=$

Number Talks

$1003-3=1000$

Number Talks

$1003-3=1000$

 $1003-4=$

Number Talks
$1003-3=1000$ $1003-4=999$

Number Talks
 $1003-3=1000$ $1003-4=999$ 1003-7 =

Number Talks

- Select a number string of related problems

1003-3

- Show one problem and have students solve mentally.

1003-4

- Discuss
- Continue showing problems individually and discussing

Routines

- Number of the Day
- Number Talks
- Comparing expressions

Comparing Expressions

- Show two related expressions

$$
3+4 \quad 4+3
$$

- Ask students to describe the relationship between
 4 + 3 the expressions using comparative language (>, <, and =)
Encourage students to justify their answer

Stations

-nemmen (if) SMU

What is a station?

- Independent or partner activities around your room
- Focused on one central concept or multiple concepts to allow for spiraled practice
- Follow station activity time with mathematical community discussions to support generalizations

Stations

- Dump It

Bears in a Cave
Missing Part Sentence Strips
How Close to 20, 100, 1000, 1
Four Strikes and You're Out

Dump It!

- Put a specified number of two colored counters in a cup
- Spill the counters onto the table

Red	Yellow	Total
5	4	9
3	6	9
2	7	9

Bears in a Cave

- Roll to determine how many bears are on a hike. Count out the number of bears.
- Close your eyes. Let your partner hide some of the bears in the cave.
- Determine how many bears are in the cave.
- Explain your thinking with pictures, number sentences, or words.

Missing Part Sentence

Strips

- Identify the number you are trying to make.
- Look at the picture shown and determine how many more you need to make the number.
-Lift up the flap to check your answer.

Missing Part Sentence Strips

$465 \| ?$

Close to 100

- Deal out 6 cards
- Use any 4 cards to make two 2-digit numbers as close to 100 as possible.
- Your score is the difference between 100 and the sum of your two 2-digit numbers
- The person with the lowest score after 5 rounds wins

SMU

Close to...

Four Strikes and You're Out

- Create a blank frame for a problem $-\ldots+{ }^{+}=-\quad$ you know children can solve; one number goes in each blank
- Guess a number. If it is in my problem, I'll record it. If not, you get a strike.

SMU

Tips and Tools

World Changers Shaped Here

Concrete Objects

Visual
 Representations

Number
 Sentences

Concrete Objects

Visual
 Representations

Number
 Sentences

- Difference between groupable and pregrouped objects

Concrete Objects

Visual Representations

Number
 Sentences

- Students aren't
"too old" for models
- Possible models:
- Pan balances
- Number lines

SMU

Concrete Objects

Visual
 Representations

Number
 Sentences

$$
\begin{aligned}
& 8+4=\square+5 \\
& \square \times 6=42 \\
& \square=1,908-10
\end{aligned}
$$

- Encourage nonstandard equations

Algebraic Reasoning

Recognizing and describing patterns and relationships between quantities that may be unknown

Recognizing and describing patterns and relationships between quantities NUMBER SENSE that are known

www.smu.edu/RME
 @RME_SMU
 fSMU Research in Mathematics Education- RME

Cassandra Hatfield, M.Ed.
Research Project Manager chatfield@smu.edu

Lindsey Perry, Ph.D.
STEM Research \& Assessment Coordinator leperry@smu.edu

