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Abstract

Under mild assumptions about the interarrival distribution, we derive a modi�ed version of

the Birnbaum-Saunders distribution, which we call the tBISA, as an approximation for the true

distribution of count data. The free parameters of the tBISA are the �rst two moments of the

underlying interarrival distribution. We show that the density for the sum of tBISA variables

is available in closed form. This density is determined using the tBISA's moment generating

function, which we introduce to the literature. The tBISA's moment generating function addi-

tionally reveals a new mixture interpretation that is based on the inverse Gaussian and gamma

distributions. We then show that the tBISA can �t count data better than the distributions

commonly used to model demand in economics and business. In numerical experiments and em-

pirical applications, we demonstrate that modeling demand with the tBISA can lead to better

economic decisions.
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1. INTRODUCTION

It is often necessary to count the number of arrivals or events during an interval of time. In many

applications, we can exploit the relationship between count data and the underlying interarrival

times. For example, customer purchase data captured by point-of-sale systems can be used to

estimate the distribution of demand, i.e. the count of transactions.

Previous research relating count and interarrival distributions relied on parametric assumptions

about the interarrival times. By far the most common such assumption is that interarrival times are

exponentially distributed, which implies Poisson counts. Despite its attractive simplicity, the Pois-

son distribution is not particularly robust because it accommodates only equi-dispersed count data.

To improve its �exibility for count applications, several modi�cations to the Poisson distribution

have been proposed (see [18] for a summary). Unfortunately, these modi�ed Poisson distributions

sacri�ce the linkage to the interarrival distribution. More recently, Winkelmann [19] investigated

the count distribution implied by gamma-distributed interarrival times (which nests exponential),

and McShane et al. [13] determined the count distribution implied by Weibull-distributed inter-

arrival times. Both papers keep the theoretical linkage between interarrivals and counts but yield

di�erent count distributions.

In this paper, we propose a more general approximation for the distribution of count data which

also retains the linkage to the interarrival distribution. We assume only that interarrival times are

i.i.d. with �nite mean and variance. Under these mild assumptions, we show that a modi�ed version

of the Birnbaum-Saunders (BISA) distribution [2], which we call the tBISA, o�ers a robust �t for

count data in a number of applications. It is �exible, permitting under-dispersed, equi-dispersed,

and over-dispersed data; it is positively skewed, consistent with nearly all count data; and the

logarithm of a tBISA random variable has a symmetric, unimodal distribution, which explains why

the logarithm of count data usually exhibits the same property (and hence why the log transform is

used in practice). In addition, the duration of the counting period (e.g., daily, weekly, yearly) can

be changed without collecting new data.

The BISA was originally derived by Birnbaum and Saunders as an approximate distribution for

the number of cycles until failure of a material specimen. It has subsequently been used almost

exclusively as a lower-tail approximation in reliability analysis where the focus is on low cycle counts

leading to material failure. In contrast, the tBISA is intended as an upper-tail approximation in

systems analysis where the focus is on high counts exceeding system capacity (e.g., inventory and

production problems).

The tBISA's free parameters are the �rst two moments of the interarrival distribution. These

parameters can be estimated from count data, as is commonly done with other count distributions,

or they can be estimated directly from interarrival data. The latter approach presents some special

opportunities: (i) the count distribution's true shape can be determined more rapidly because a

single count of size m represents m-1 interarrivals; (ii) in cases where counts are censored because

of an upper bound (as would be the case when capacity is exceeded or inventory is exhausted), the

underlying interarrival data are not censored so valid parameter estimates for the tBISA distribution
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can still be obtained from interarrival data. We demonstrate both estimation approaches.

Because many applications require that counts be summed, we investigate the additive properties

of the tBISA. For example, the interarrival distribution may change (e.g., by time-of-day, day-of-

the-week or season), thereby violating the assumption that arrival times are identically distributed.

Another example involves dynamic inventory models. Determining the optimal policy parameters

in some dynamic inventory models requires aggregating demand over the number of periods in the

delivery lag.

Determining the sum of tBISA random variables requires that we derive the BISA's moment

generating function (mgf), which appears to have been previously undiscovered (interestingly, the

mgf of the log-BISA, also called the sinh-normal, is known, albeit in terms of modi�ed Bessel

functions of the third kind [15]). The BISA mgf reveals that the distribution can be represented as

a mixture, in equal proportions, of (i) an inverse Gaussian and (ii) the same inverse Gaussian plus

an independent gamma distribution with shape parameter k = 1/2. This result isolates and clari�es

the di�erence between the BISA distribution and the inverse Gaussian. Our mixture interpretation

implies that a reciprocal inverse Gaussian is the sum of an inverse Gaussian and an independent

gamma with shape parameter k = 1/2. Thus, adding this independent gamma to an inverse Gaussian

has the peculiar e�ect of taking its reciprocal. This mixture interpretation is quite di�erent from

that obtained by Desmond [4], who showed that the BISA is a mixture of an inverse Gaussian

and a reciprocal inverse Gaussian. We generalize our mixture result and use it to obtain a closed-

form expression for the density of the sum of n independent BISA random variables. This closed-

form expression provides an analytical and computational advantage over some other distributions

commonly used in counting problems, e.g., the lognormal.

2. A GENERAL APPROXIMATION FOR THE DISTRIBUTION

OF COUNT DATA

Let Xi be the ith interarrival time (the time between arrivals i-1 and i), a nonnegative continuous

random variable. We assume interarrival times are i.i.d., though we will relax this assumption later.

Assuming the �rst interarrival is measured with respect to time t = 0 (as in [17]), the cumulative

probability of count C being n or less in the time interval [0, T ] is given by

Pr (C ≤ n) = Pr

(
n+1∑
i=1

Xi > T

)
= 1− Pr

(
n+1∑
i=1

Xi ≤ T
)
. (1)

Although the count distribution is known to be asymptotically normal N(T/µ, Tσ2/µ3) as T goes

to in�nity (e.g., see Theorem 3.3.5 of [17]), there is an approximate intermediate distribution that

applies when T is �nite but large.

Assume the interarrival distribution has mean µ and standard deviation σ; then by (1) and the
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central limit theorem, the probability of the count C being n or less is

Pr (C ≤ n) = Pr

(
n+1∑
i=1

Xi > T

)
= Pr

(
X̄ − µ

σ/
√
n+ 1

>
T/(n+ 1)− µ
σ/
√
n+ 1

)

≈ 1− Φ

(
T/(n+ 1)− µ
σ/
√
n+ 1

)
(2)

where Φ(·) is the cumulative distribution function for the standard normal. Approximating the

discrete count n with a continuous variable x ≥ 0, we obtain the density

1
2σ
√

2π
exp

(
−1

2

(
[T − (x+ 1)µ]
σ
√
x+ 1

)2
)
·
(
T + (x+ 1)µ

(x+ 1)3/2

)
. (3)

By comparison, Birnbaum and Saunders [2] use n instead of (n+1) when modeling the number of

cycles until failure (this is because n = 0 is not a possibility in their model; it is in ours), so their

density is
1

2σ
√

2π
exp

(
−1

2

(
[T − xµ]
σ
√
x

)2
)(

T + xµ

x3/2

)
. (4)

Birnbaum and Saunders also de�ne new parameters α = σ/
√
µT , β = T/µ, and rewrite their

density in terms of these parameters. Because µ and σ are observable in many count applications

and because we intend to exploit the connection between interarrival and count distributions, we

will retain the parameters µ, σ and T .

The probability of the count equaling n using (3) corresponds to the area between n and n-1,

which is not centered at n but instead at n− 1/2. This can be corrected by shifting (3) to the right

by 1/2 unit. We refer to the continuity-corrected density, which retains the linkage to the timing

distribution, as the tBISA

1
2σ
√

2π
exp

(
−1

2

(
[T − (x+ .5)µ]
σ
√
x+ .5

)2
)(

T + (x+ .5)µ
(x+ .5)3/2

)
. (5)

The continuity correction is especially important in count problems like those in the following

section, where precise numerical comparisons are desired.

A variety of shapes are possible for (5). For example, taking µ = 20 and T= 500, we have

plotted the density for σ = 10, 20, 30, 40 in Figure 1. These plots are not meant to be exhaustive

but rather to illustrate the connection between the parameters of the interarrival distribution and

the shape of the count distribution. Observe that increasing the variance (or coe�cient of variation)

in the interarrival distribution leads to greater variance and greater positive skewness in the count

distribution. Calculation of the �rst three moments of (5) provides a more precise description of

this result. These moment calculations involve an integral approximation where (T − .5µ)/σ
√
.5

is replaced by +∞ in the upper limit of an integral involving the standard normal density. If

(T−.5µ)/σ
√
.5 exceeds 3 or 4�a condition that would be met in all but the lowest count problems�
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Figure 1: tBISA density for T = 500,µ = 20, σ= 10, 20, 30, 40

this approximation is very good. Thus, while the next proposition states approximate results, the

results are nearly exact for practical purposes.

Proposition 1. Let the mean and standard deviation of the (stationary) interarrival distribution

be µ and σ, respectively. Then the �rst three moments about the mean for the count distribution (5)

are

(i) E(C) ∼= T
µ − .5 + σ2

2µ2

(ii) E(C − E(C))2 ∼= 5σ4

4µ4 + T
µ ·

σ2

µ2

(iii) E(C − E(C))3 ∼= 11σ6

2µ6 + T
µ ·

σ4

µ4

Not surprisingly, result (i) is 1/2 unit less than the corresponding result in [2] while result (ii)

is identical. Result (iii) can be obtained from [9] after a little algebra. We note that the moment

formulas in Proposition 1 are all functions of just two fundamental quantities, the coe�cient of

variation of the interarrival distribution, σ/µ, and the ratio T/µ. Moreover, the moments are all

increasing functions of these two terms. In particular, the third moment about the mean is always

positive so the count distribution is always positively skewed.

Proposition 2. The density (5) is unimodal, and its mode is less than its median which is less

than its mean.

When a tBISA random variable (5) is log-transformed, it produces a symmetric, unimodal

distribution that resembles a normal distribution. This result is analogous to that obtained in [16]

for the BISA distribution (4).
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Proposition 3. Suppose that the count C has the density (5). Then Y = ln(C+ .5) has a unimodal

distribution that is symmetric about ln(T/µ).

The proof of Proposition 3 is straightforward, and the proposition provides a theoretical basis

for modeling the logarithm of count data, as is customarily done in many applications in economics

and business. It is worth noting, however, that the tBISA distribution retains an important advan-

tage over logarithmic distributions�it is derived directly from the interarrival distribution whose

moments de�ne its free parameters.

3. SOME COMPARISONS WITH EXACT COUNT DISTRIBU-

TIONS

We now assess the accuracy of the tBISA approximation. Under certain assumptions, the probability

that the count C equals n can be computed exactly so a comparison between the tBISA distribution

(5) and a known count distribution is possible. The primary requirements for the interarrival

distribution are that (i) the interarrival distribution has nonnegative support and (ii) the distribution

for the sum can be determined in a convenient numerical form. We consider two such cases here.

The �rst is a gamma interarrival process, which nests the exponential, Erlang, and chi-square as

special cases. The second is a uniform interarrival process. For comparing �ts, we report the mean

and variance of each distribution (exact count distribution vs. tBISA) as well as the maximum

absolute value of the di�erence, Dmax, between the cdf of the exact count distribution and the cdf

of the tBISA.

3.1 Gamma Interarrivals

We follow the development of Winkelmann [19]. The time between arrivals is gamma distributed

with shape parameter k >0 and scale parameter θ >0. The time interval is [0,T ]. The mean and

variance are kθ and kθ2, respectively. The interarrival time has probability density

f(τ ; k, θ) =
1

θkΓ(k)
τk−1 exp (−τ/θ) for τ > 0 and k, θ ∈ R+ (6)

De�ne

G(nk, T/θ) =
1

Γ(nk)

T/θˆ

0

unk−1 exp(−u)du. (7)

The count distribution on the interval [0,T ] is

P (C = n) = G(kn, T/θ)−G(k(n+ 1), T/θ) (8)

for n = 0, 1, 2,. . . .

Figure 2 illustrates the exact count distribution for k = 1/2, 1, 2, θ = 40, 20, 10, and T= 500 as

well as the tBISA approximation (5). We chose these combinations so that the mean interarrival
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Gamma Interarrivals Uniform Interarrivals
k = 1/2, θ= 40 k= 1, θ= 20 k= 2, θ= 10 T = 5 T = 10

µcount 25.5 25 24.75 9.667 19.660
µtBISA 25.5 25 24.75 9.66667 19.6667
σcount 7.053368 5 3.544361 1.886 2.602
σtBISA 7.416198 5.123475 3.579455 1.86339 2.60875
Dmax .03762 .02660 .01881 .0029 .0015

Table 1: tBISA approximation compared to exact count distributions

time is 20 in all cases; this makes the count distributions easier to compare. We observe that the

tBISA distribution approximates the exact count distribution quite well overall, particularly (and

importantly) in the upper tail. This is perhaps not surprising given the asymptotic nature of the

central limit theorem used to derive the tBISA density. The means, standard deviations, andDmax's

are given in Table 1. For the exact count distribution, these values were calculated numerically; for

the tBISA distribution, these values were computed using the formulas in Proposition 1. The mean

of the tBISA approximation equals the true mean exactly and the standard deviations are very

close. Observe that the �t of the tBISA approximation improves (Dmax is lower) as the parameter

k of the gamma interarrival distribution increases. The case k=1 corresponds to the exponential

distribution and so the exact count distribution is Poisson.

Figure 2: tBISA distribution (solid line) vs. exact count distribution (dashed line) assuming gamma
interarrivals.
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Figure 3: tBISA distribution (solid line) vs. exact count distribution (dashed line) assuming uniform
interarrivals.

3.2 Uniform Interarrivals

Assume interarrival times are uniform U [0,1]. The mean and variance are 1/2 and 1/12, respectively.

Then the density for Sn = U1 + U2 + · · · · ·Un is

fn(x) =
1

2 · (n− 1)!

n∑
k=0

(−1)k
(
n

k

)
(x− k)n−1sgn(x− k) 0 ≤ x ≤ n, (9)

which can be obtained after some algebra from Theorem 1 in [3]. From (9) one can compute the

exact probability of the count equaling n for the time interval [0,T ]

P (C = n) = P (Sn+1 ≥ T )− P (Sn ≥ T ) =
ˆ n+1

T
[fn+1(x)− fn(x)]dx. (T ≤ n+ 1) (10)

Comparisons of the tBISA density and fn(x) for T= 5, 10 are shown in Figure 3 and their �ts are

compared in Table 1. In both cases, the tBISA approximates the exact count distribution extremely

well.
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4. ADDITIVE PROPERTIES

In many applications, summing random counts is important. In economics and business applications,

for example, the demand distribution may vary over time (e.g., by time-of-day or day-of-the-week)

so demand over the speci�ed period can be represented as the sum of demands over disjoint subin-

tervals. Also, many inventory problems require determining the distribution of demands summed

over periods (i.e., a lag or lead time interval).

Determining the sum of BISA random variables requires the mgf of the BISA distribution. We

will use the uncorrected BISA (4) to simplify comparison with previous results. The mgf for the

tBISA (5), which includes a 1/2 unit shift by comparison to the uncorrected BISA, would introduce

an additional multiplicative factor e−t/2.

The inverse Gaussian with mean ω and (reciprocal) dispersion parameter λ will play a prominent

role in this discussion. Its density is given by

fIG(x) =
(

λ

2πx3

)1/2

exp

(
−λ(x− ω)2

2ω2x

)
x > 0. (11)

Theorem 1. Consider a BISA random variable having density

fBS(x) =
1

2σ
√

2π
exp

(
−1

2

(
[T − (x)µ]
σ
√
x

)2
)
·
(
T + xµ

(x)3/2

)
x > 0.

(a) The mgf exists and equals

MBS(t) =
1
2

exp

Tµ
σ2

1−
√

1− 2t
σ2

µ2

1 +
1√

1− 2tσ2

µ2

 for |t| < µ2

2σ2
.

(b) The BISA random variable is the discrete mixture of two distributions in equal proportion. The

�rst is an inverse Gaussian with ω = T/µ and λ = T 2/σ2; the second is the sum of an inverse

Gaussian (with the same parameters) and an independent gamma distribution with shape parameter

k = 1/2 and scale parameter θ = 2σ2/µ2.

Proof. Observe that the BISA density is similar in structure to the inverse Gaussian. Indeed, if we

set λ = T 2/σ2 and ω = T/µ, the associated inverse Gaussian density becomes

fIG(x) =
1√
2π

T

σ

1
x3/2

exp

(
−1

2

(
T − µx
σ
√
x

)2
)
. (12)

The mgf for the inverse Gaussian, MIG(t), is known to be (see [8])

MIG(t) =

∞̂

0

exp(tx)
(

λ

2πx3

)1/2

exp

(
−λ(x− ω)2

2ω2x

)
dx = exp

λ
ω

1−

√
1− 2ω2t

λ


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= exp

Tµ
σ2

1−
√

1− 2t
σ2

µ2

 for |t| < µ2

2σ2
(13)

The mgf of the BISA distribution, MBS(t), can be expressed in terms of the mgf of the inverse

Gaussian

MBS(t) =

∞̂

0

exp(tx)
1

2σ
√

2π
exp

(
−1

2

(
T − xµ
σ
√
x

)2
)
·
(
T + xµ

x3/2

)
dx

=
1
2

∞̂

0

exp(tx)
T

σ
√

2π
exp

(
−1

2

(
T − xµ
σ
√
x

)2
)

1
x3/2

dx

+
µ

2T

∞̂

0

exp(tx)
T

σ
√

2π
exp

(
−1

2

(
T − xµ
σ
√
x

)2
)

1
x1/2

dx

=
1
2
MIG(t) +

µ

2T
M ′IG(t) (14)

(Di�erentiation of MIG(t) in equation (14) can be justi�ed for any |t| < µ2/2σ2 by applying

Lebesgue's Dominated Convergence Theorem to the di�erence quotients.)

= 1
2 exp

(
Tµ
σ2

(
1−

√
1− 2tσ2

µ2

))
+ µ

2T exp
(
Tµ
σ2

(
1−

√
1− 2tσ2

µ2

))T
µ

1√
1−2tσ

2

µ2


= 1

2 exp
(
Tµ
σ2

(
1−

√
1− 2tσ2

µ2

))1 + 1√
1−2tσ

2

µ2

 for |t| < µ2

2σ2 (15)

This establishes part (a). For part (b), the mgf in (a) can be written as

1
2

exp

Tµ
σ2

1−
√

1− 2t
σ2

µ2

+
1
2

exp

Tµ
σ2

1−
√

1− 2t
σ2

µ2

 1√
1− 2tσ2

µ2

(16)

The �rst term is 1/2 the mgf of an inverse Gaussian with parameters λ = T 2/σ2 and ω = T/µ. The

second term is 1/2 the product of (i) the mgf of an inverse Gaussian with parameters λ = T 2/σ2

and ω = T/µ and (ii) the mgf of a gamma distribution with shape parameter k= 1/2 and scale

parameter θ = 2σ2/µ2 (recall that the mgf of the gamma is (1− θt)−k for |t| < 1/θ). This implies

the result stated in the theorem.

By part (a) of the theorem, it can be con�rmed that M ′BS(0) = T/µ + σ2/2µ2 and M ′′BS(0) −
(M ′BS(0))2 = (T/µ)

(
σ2/µ2

)
+ 5σ4/4µ4, which are the mean and variance, respectively, of the BISA

distribution (4). Though the central moments have been derived before by other means (see [2], [7])

we appear to have discovered a closed-form expression for the mgf and the new mixture interpretation

it implies. The mixture interpretation in part (b) of our theorem is quite di�erent from that in [4],
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which characterized the BISA distribution as a mixture, in equal proportions, of an inverse Gaussian

and a reciprocal inverse Gaussian (the distribution of 1/X where X ∼ inverse Gaussian). Moreover,

our mixture interpretation allows us to analyze sums of independent BISA random variables having

di�erent parameters Ti, µi, and σi, something Desmond's interpretation does not facilitate. Finally,

our mixture result implies that the reciprocal inverse Gaussian is equivalent to the sum of an inverse

Gaussian and a gamma; this will be revisited after Theorem 2.

Our discussion now turns to summing BISA random variables. The summation requires the use

of con�uent hypergeometric functions, which are general solutions of the di�erential equation

z
d2w

dz2
+ (b− z)dw

dz
− aw = 0

introduced and analyzed by Kummer [12]. One solution is the con�uent hypergeometric function

of the �rst kind (also known as Kummer's function of the �rst kind), whose in�nite series is given

by

M(a, b, z) = 1 +
a

b
z +

a(a+ 1)
b(b+ 1)

z2

2!
+
a(a+ 1)(a+ 2)
b(b+ 1)(b+ 2)

z3

3!
+ · · · · . (17)

A second independent solution is the con�uent hypergeometric function of the second kind (Kum-

mer's function of the second kind), given by

U(a, b, z) =
π

sin(πb)

{
M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−bM(1 + a− b, 2− b, z)

Γ(a)Γ(2− b)

}
. (18)

(See Chapter 13 of [1]). Bessel functions, Hermite polynomials, Laguerre polynomials, and the error

function are all special cases of con�uent hypergeometric functions. These functions have recently

been used to calculate closed form expressions for visiting rates [14].

In order to obtain closed-form expressions for the sum of BISA random variables, we need the

following theorem, which involves the sum of two independent random variables, an inverse Gaussian

and an independent gamma.

Theorem 2. The sum of (i) an inverse Gaussian with parameters λ = T 2/σ2 and ω = T/µ and

(ii) an independent gamma with shape parameter k (k = 1/2, 1, 11/2, 2,. . . ) and scale parameter

θ = 2σ2/µ2 has density

fIG+G(s) =
Tµ2k

√
2π · σ · (2σ2)k

exp

(
−1

2

(
T − µs
σ
√
s

)2
)
· sk−3/2U(k, 3/2, T 2/2σ2s).

Proof. The density for the stated inverse Gaussian is

fIG(x) =
1√
2π

T

σ

1
x3/2

exp

(
−1

2

(
T − µx
σ
√
x

)2
)

(19)

and that for the independent gamma is
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fG(x) =
1

Γ(k) (2σ2/µ2)k
xk−1 exp

(
−µ

2x

2σ2

)
. (20)

Therefore, the sum of the random variables has a density given by the convolution fIG+G(s) =
ś

0

fIG(x)fG(s− x)dx (s ≥ 0)

= αk

sˆ

0

exp

(
−1

2

(
T − µx
σ
√
x

)2
)

exp

(
−µ

2(s− x)
2σ2

)
(s− x)k−1 1

x3/2
dx (21)

αk exp

(
−1

2

(
µ2s− 2µT

σ2

)) sˆ

0

exp

(
−1

2
T 2

σ2x

)
(s− x)k−1 1

x3/2
dx (22)

where αk = T/
(√

2π · Γ(k) · σ ·
(
2σ2/µ2

)k). Making the change of variable x = 1/ (u+ 1/s) for

s > 0 (when s= 0 we may take fIG+G(0) = 0), (22) becomes

αk exp

(
−1

2

(
µ2s− 2µT + T 2/s

σ2

)) ∞̂

0

exp

(
−1

2
T 2

σ2
u

)(
us2

us+ 1

)k−1 (
s

us+ 1

)1/2
du

= αk exp

(
−1

2

(
T − µs
σ
√
s

)2
)
s2(k−1)+1/2

∞̂

0

exp

(
−1

2
T 2

σ2
u

)
uk−1

(
1

us+ 1

)k−1/2

du (23)

Observe that the density is the product of two functions, the �rst involving only s and possessing

many features of an inverse Gaussian, the second involving an integral where s is a parameter. We

now focus on evaluating the integral portion. De�ne

gk(s) =

∞̂

0

exp

(
−1

2
T 2

σ2
u

)
uk−1

(
1

us+ 1

)k−1/2

du (24)

so that

fIG+G(s) = αk exp

(
−1

2

(
T − µs
σ
√
s

)2
)
· s2(k−1)+1/2gk(s). (25)

Observe that

gk(0) =
∞́

0

exp
(
−1

2
T 2

σ2 u
)
uk−1du =

(
2σ2

T 2

)k ∞́
0

exp(−v) · vk−1dv =
(

2σ2

T 2

)k
Γ(k)

for k = .5, 1, 1.5, ...,

so gk(s) is de�ned for s ≥ 0, even though we now focus on s > 0. For each k (k = j/2, j= 1, 2,

3. . . .), apply the change of variable u = v/s (s > 0) to obtain
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gk(s) =

∞̂

0

exp

(
−1

2
T 2

σ2
u

)
uk−1

(
1

us+ 1

)k−1/2

du = s−k
∞̂

0

exp

(
− T 2

2σ2

v

s

)
vk−1(v + 1)1/2−kdv.

(26)

For z > 0,

Γ(a)U(a, b, z) =

∞̂

0

exp(−zt) · ta−1(1 + t)b−a−1dt, (27)

(Formula 13.2.5 of 1, pg 505), which for a = k and b = 3/2 yields

gk(s) = s−k
∞̂

0

exp

(
− T 2

2σ2

v

s

)
· vk−1(v + 1)1/2−kdv = s−kΓ(k)U(k, 3/2, T 2/2σ2s) (28)

[Note: For k = 1/2, we have U(1/2, 3/2, T 2/2σ2s)= (σ
√

2s)/T , which can be obtained by allowing

�Γ(0) =∞� in the de�nition of U or by direct calculation of g1/2(s).] Substituting for αk and gk(s)
in 25 yields the result stated in the theorem.

An interesting and immediate consequence of Theorem 2 is the following special result.

Corollary 1. The sum of (i) an inverse Gaussian with parameters λ = T 2/σ2 and ω = T/µ and

(ii) an independent gamma with shape parameter k = 1/2 and scale parameter θ = 2σ2/µ2 has a

reciprocal inverse Gaussian distribution.

Proof. Inserting the stated parameters, the density for the sum reduces to

fIG+G(s) =
µ√

2π · σ
exp

(
−1

2

(
T − µs
σ
√
s

)2
)
· s−1/2,

which is the density for a reciprocal inverse Gaussian as described by Desmond [4].

Now letXi denote a random variable following a BISA distribution (4) with parameters Ti, σi and

µi. Assume the Xi are independent. While it is not true that
n∑
i=1

Xi follows a BISA distribution, we

can derive the density for the sum under a simple, plausible property of the coe�cients of variation.

Property 1. There exists a positive constant v such that σi/µi = v for all i.

This property implies that, while count data may be under-dispersed, equi-dispersed or over-

dispersed, that dispersion must remain constant over time. It was satis�ed, for example, in our

carbonated beverage demand data (discussed in section 5) when we split each 24 hour day into

daytime and nighttime.

Under property 1 we have the following result.
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Theorem 3. Let Xi be a random variable with BISA density (4) and parameters Ti, σi, and µi.

Assume σi and µi adhere to property 1 and the Xi are independent. Then
n∑
i=1

Xi has a mixture

distribution whose density is given by f(s) = (1/2)n f0(s) +
n∑
j=1

(1/2)n
(
n

j

)
fj(s) where

fj(s) =
Tµj√

2π · 2j/2σj+1
exp

(
−1

2

(
T − µs
σ
√
s

)2
)
· sj/2−3/2U(j/2, /2, T 2/2σ2s)

and µ =

√
n∑
i=1

µ2
i , σ =

√
n∑
i=1

σ2
i , and T =

n∑
i=1

Ti
µi
µ.

[Note: For j= 0 we de�ne U(0, /2, T 2/2σ2s)= 1; for j = 1, we have U(1/2, /2, T 2/2σ2s)=
(σ
√

2s)/T ]

Proof. The mgf for
n∑
i=1

Xi can be written as

1
2

exp

Tµ
σ2

1−
√

1− 2t
σ2

µ2

+
1
2

exp

Tµ
σ2

1−
√

1− 2t
σ2

µ2

 1√
1− 2tσ2

µ2

(29)

The �rst term is 1/2 the mgf of an inverse Gaussian with parameters λ = T 2/σ2 and ω = T/µ. The

second term is 1/2 the product of (i) the mgf of an inverse Gaussian with parameters λ = T 2/σ2

and ω = T/µ and (ii) the mgf of a gamma distribution with shape parameter k= 1/2 and scale

parameter θ = 2σ2/µ2 (recall that the mgf of the gamma is (1− θt)−k for |t| < 1/θ). This implies

the result stated in the theorem.is

M∑Xi
(t) = (1/2)n

n∏
i=1

exp

Tiµi
σ2
i

1−

√√√√1− 2t

(
σ2
i

µ2
i

)1 +

(
1− 2t

σ2
i

µ2
i

)−1/2
 (30)

Since the coe�cient of variation is constant, set v2 = σ2
i /µ

2
i for all i. Then

M∑Xi
(t) = (1/2)n

n∏
i=1

exp
(
Ti
v2µi

(
1−

√
1− 2tv2

))(
1 +

(
1− 2tv2

)−1/2
)

(31)

= exp


(
1−
√

1− 2tv2
)

v2

n∑
i=1

Ti
µi

 · n∑
j=0

(1/2)n ·
(
n

j

)
·
(
1− 2tv2

)−j/2
(32)

=
n∑
j=0

(1/2)n ·
(
n

j

)
· exp


(
1−
√

1− 2tv2
)

v2

n∑
i=1

Ti
µi

 · (1− 2tv2
)−j/2

(33)

De�ne the new parameters:

µ =

√√√√ n∑
i=1

µ2
i , σ =

√√√√ n∑
i=1

σ2
i , T =

n∑
i=1

Ti
µi
µ (34)

14



Observe that the new parameters satisfy σ/µ = v due to property 1. Then each term in the

summation of (33) (ignoring the mixture weights) takes the general form

exp
(
Tµ

σ2

(
1−

√
1− 2tv2

))
·
(
1− 2tv2

)−j/2
, (35)

which is the mgf for the sum of (i) an inverse Gaussian with parameters λ = T 2/σ2 and ω = T/µ

for T , µ and σ as de�ned in (34) and (ii) an independent gamma with shape parameter j/2 and

scale parameter θ = 2σ2/µ2 = 2v2. By Theorem 2, each of these has a density fj involving the

con�uent hypergeometric function of the second kind,

f0(s) =
T√

2π · σ
exp

(
−1

2

(
T − µs
σ
√
s

)2
)
· s−3/2 for j = 0

fj(s) =
Tµj√

2π · σj+1 · 2j/2
exp

(
−1

2

(
T − µs
σ
√
s

)2
)
· sj/2−3/2U(j/2, 3/2, T 2/2σ2s) for j = 1, 2, 3, ..

(36)

The density for the sum of independent BISA random variables whose interarrival distributions

have the same coe�cient of variation is therefore the mixture

f(x) = (1/2)n f0(s) +
n∑
j=1

(1/2)n
(
n

j

)
fj(s). (37)

This is a closed form representation involving con�uent hypergeometric functions.

Clearly, the shape of the �nal density in Theorem 3 is determined by the shape of the individual

densities fj(x). To understand how T , µ, and σ a�ect the overall shape, we graphed the individual

densities j = 0, 1, 2, 3, 4, 5 for two numerical cases: when T = 500, µ = 20, and σ = 10 (Figure

4); and when T = 500, µ = 20, and σ = 40 (Figure 5). Mixing the two leftmost densities in equal

proportions (.5, .5) corresponds to the BISA distribution. Mixing the three leftmost densities in

proportions (.25, .50, .25) corresponds to adding two BISA distributions. Mixing the four leftmost

densities in proportions (.125, .375, .375, .125) corresponds to adding three BISA distributions, etc.

As one might expect, the individual densities exhibit greater spread as the coe�cient of variation

increases from v = .5 (Figure 4) to v= 2 (Figure 5). Moreover, the expected values for the fj(s)
increase with v as well. This result could be obtained directly by considering the expected value

formula for a single BISA random variable (see Proposition 1).

Recall that the mgf for the tBISA introduces a factor e−t/2 into the expression of Theorem 1,

so the mgf for the sum of m such tBISAs includes an additional factor e−mt/2. This amounts to

shifting all of the mixture densities in Theorem 3 to the left by m/2 units. We also note that the

parameters µ, σ, and T de�ned in Theorem 3 are not the only possible choices. These were chosen

because they are easy to interpret. The proof of Theorem 3 goes through for other choices provided

(i) (σ/µ) = v and (ii) T/µ =
n∑
i=1

Ti/µi. This implies that the density in Theorem 3 is governed by

two unknown parameters provided the number of terms in the sum, n, is known. Alternatively, one
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could think of the parameter n as a third unknown parameter in a generalized tBISA distribution.

Figure 4: Mixture densities fj(s), j = 0, 1, 2, 3, 4, 5 (dashed lines); density of sum f(x)(solid line)
for T = 500, µ = 20, σ = 10.

5. APPLICATIONS

5.1 An Empirical Test: Fitting the tBISA to Demand Data

Additional tests are required to determine the suitability of the tBISA as an approximation to the

distribution of count data. Our testing will focus on demand, the count of individual purchases,

which is commonly analyzed in economics and business problems. Accordingly, we use the term

�interpurchase� as a more descriptive synonym for �interarrival� throughout this discussion. Our

�rst test involved �tting the tBISA to actual demand data. We obtained demand data for the

best-selling carbonated beverage at a local convenience store. Three hundred and eighty-�ve days

of data were available. We estimated the demand distribution using daily sales counts so that the

input data was consistent across the candidate distributions we considered. It is interesting to note

that the interpurchase distribution was not stationary over the entire day, so the assumptions under

which we derived the tBISA were not, strictly speaking, met. This means the conditions for �tting

the tBISA were less than ideal.

The normal and lognormal distributions are most commonly used to �t demand data in practice.

We therefore �t these two distributions plus the Poisson and tBISA. All but the tBISA are easily �t

using closed-form maximum likelihood estimates. The tBISA does not have closed form maximum

likelihood estimates (these can be found via numerical optimization) but does have closed form
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Figure 5: Mixture densities fj(s), j = 0, 1, 2, 3, 4, 5 (dashed lines); density of sum f(x)(solid line)
for T = 500, µ = 20, σ = 40.

method of moments estimates which we use instead (see appendix). We computed Dmax for each

distribution as compared to the empirical demand distribution. We also computed Dmax restricted

to the top decile of the empirical distribution because the upper tail of the demand distribution is

typically most critical in business and economics applications. The results are summarized in Table

2, which clearly shows that the tBISA �ts the carbonated beverage data better than the commonly

used distributions. This is evident both for the entire distribution and for the upper tail.

Normal Lognormal tBISA Poisson
Dmax .075 .052 .042 .087
Dmax−topdecile .025 .019 .012 .068

Table 2: Goodness-of-�t for carbonated beverage demand data.

5.2 A Newsvendor Problem

We now consider a newsvendor application where the lognormal has been shown to �t the demand

data well [5]. We �rst formalize how the tBISA applies to the newsvendor model.

Let the unit cost of overage be h (the per unit cost of holding excess inventory), the unit cost

of shortage be s (the cost of losing a sale), and de�ne β = s/(s + h). If demand follows a tBISA

distribution, the optimal newsvendor quantity Q satis�es the equation FtBISA(Q) = β or

1− Φ([T − (Q+ 1/2)µI ]/[σI
√
Q+ 1/2]) = β, (38)
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where T is the time period, µI is the mean interpurchase time, σI is the standard deviation of the

interpurchase time, and Φ is the cdf for the standard normal distribution. The optimal Q therefore

satis�es

[T − (Q+ 1/2)µI ]/[σI
√
Q+ 1/2] = z1−β, (39)

where zβ = Φ−1(β). Using a little algebra and the fact that z1−β = −zβ , we determine that the

optimal Q is

Q∗ = T/µI − 1/2 + z2
β(σI/µI)2 + 1/2

√
(zβσI/µI)4 + 4(zβσI/µI)2T/µI . (40)

Observe that this quantity depends only on parameters of the interpurchase distribution (T/µI ,

σI/µI) and the same critical value one would use if the distribution of demand was assumed to be

normal.

We applied the tBISA to the semiconductor demand data used by Gallego [5]. Sample statistics

for weekly demand are x̄D = 207 and s2D = 210681. Assuming an overage cost of h = $2 and a

shortage cost of s = $5, the optimal order quantity based on the empirical distribution of demand

is approximately 100 units, which leads to an optimal pro�t of $69. In contrast, the optimal order

quantity based on a normal distribution leads to a loss of $291. Gallego found the lognormal distri-

bution was a much better alternative. Using the method of moments to �t a lognormal distribution

to the demand data, he determined the optimal order quantity to be 181 with a corresponding pro�t

of $29�a vast improvement over the normal distribution.

Distribution Optimal Q Optimal Pro�t
Normal 467 -$291
Lognormal 181 $29
tBISA 137 ≥$50.72
Empirical 100 $69

Table 3: Comparison of optimal inventory levels and pro�ts

Using the same data and cost assumptions, we found the tBISA distribution produced materially

better results. As Gallego did for the lognormal distribution, we used the method of moments (see

appendix) to �t the tBISA. This results in estimates of T/µI = 2.78525 and σ2
I/µ

2
I = 409.42949

(note that these values are calculated from the demand data, not from interpurchase times). The

optimal order quantity using these estimates is Q∗ = 137 and the optimal pro�t is at least $50.72

(this follows from concavity of the pro�t function; we cannot be more precise without the full dataset

which is no longer available). The results are summarized in Table 3.

5.3 Applications to Dynamic Inventory Models

The distribution of demand also plays an essential role in more complicated models of inven-

tory/production. In practice, the true distribution is typically unknown (see [6]) so selecting a

robust approximation is important. In some inventory/production applications, one must deter-
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mine aggregate demand over multiple periods and so distributions that have additive properties

are preferred. To determine if the tBISA holds promise in such settings, we conduct a simulation

experiment using demand generated from a gamma interpurchase distribution. This interpurchase

distribution was selected because it allows for over-, under-, and equi-dispersion in the correspond-

ing count (demand) distribution and because one can compute probabilities for the exact count

distribution using the incomplete gamma (see equations 7 and 8).

The distribution of aggregate demand is a fundamental concern in dynamic inventory models. In

these models, one considers the short and long term costs of inventory over a multi-period horizon.

Typical inventory costs include (i) the cost of ordering/purchasing inventory, (ii) the cost of holding

excess inventory, and (iii) the the cost of either backlogging an item (if excess demand is backordered)

or losing a sale (if excess demand is lost). In some dynamic models, it is possible to describe in

compact form the optimal order/purchase decision�otherwise termed the optimal policy�given the

period's starting inventory position. For example, consider an in�nite horizon (with future periods

discounted) with proportional order costs, full backlogging of unsatis�ed demand, constant revenue

per unit sold, and a known lag in delivery. In this case, the optimal policy is of the base stock type,

meaning that there is a critical number x (the base stock level), and the optimal decision at the

start of each period is to order enough units to bring the inventory position up to x. The optimal

base stock parameter can be computed via a single equation, which highlights the impact of demand

ξ and the demand density φ(ξ) in a simple way. In the case of instantaneous delivery (zero delivery

lag), the optimal base stock parameter x is the solution to

c · (1− α) +

xˆ

0

h′(x− ξ)φ(ξ)dξ −
∞̂

x

[b′(ξ − x) + r]φ(ξ)dξ = 0, (41)

where we further assumed the holding and backlogging cost functions are h(x − ξ) = h · (x − ξ)+

and b(ξ−x) = b · (ξ−x)+; c is the per-unit cost of ordering inventory; h is the cost of holding excess

inventory (per-unit per-period); b is the cost of backlogging excess demand (per-unit per-period);

r is the constant revenue per unit sold; and α is the discount factor per period (see Karlin [11]).

(Note: in contrast to Karlin, we did not obtain the revenue term r in our derivation of this equation.

However, this discrepancy merely changes the backorder cost to b + r instead of b.) In the case of

a two-period delivery lag, the corresponding equation becomes

c · (1− α) + α2

∞̂

0

∞̂

0

L′(x− ξ − η)φ(ξ)φ(η)dξdη = 0 (42)

where L(z) =
ź

0

h(z − ξ)φ(ξ)dξ +
∞́

z
b(ξ − z)φ(ξ)dξ for z > 0 and L(z) =

∞́

0

b(ξ − z)φ(ξ)dξ for z < 0

[10]. The number of iterated integrals increases with the delivery lag, so having a closed-form

expression for the distribution of the sum of random variables o�ers a signi�cant computational

advantage. One can then replace the iterated integral with an equivalent expression involving only
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a single integral.

We considered three possible parameter combinations for gamma distributed interpurchases:

(k, θ) = (.5, 40), (1, 20), and (2, 10). Each combination implies a mean interarrival of 20; stan-

dard deviations are 28.28, 20, and 14.14, respectively. The corresponding coe�cients of variation

are 1.414, 1, and .707, which imply over-dispersion, equi-dispersion, and under-dispersion in their

respective count distributions [19].

We calculated the optimal theoretical base stock parameters using the exact count distribution

for gamma interarrivals with parameters (k, θ) using equations (41) and (42), giving us a theoret-

ical benchmark. To �t the alternative demand distributions, we simulated interpurchase streams

from a gamma distribution with parameters (k, θ) and tabulated the corresponding counts for each

period of length T = 500. The count streams were used to �t the normal, lognormal, and tBISA

distributions. Normal and lognormal distributions were �t using maximum likelihood estimates; the

tBISA distribution was �t using the method of moments (see the appendix for details). The tBISA

was also �t directly to interpurchase streams. tBISA distributions �t to count data were labeled

tBISA-C, those �t to interpurchase data were labeled tBISA-I. All �tted distributions (normal, log-

normal, tBISA-C and tBISA-I) were then used to calculate optimal base stock levels conditional on

the choice of distribution. This process is identical to the classical approach with errors in distribu-

tion discussed in [6] and it fairly re�ects the type of approximation one must make in selecting a

distribution for real-world inventory applications. Because the number of periods n is an important

practical issue in �tting a distribution to data, we considered �ve di�erent values, n = 10, 25, 50,

100, 200. In total, three parameter combinations for (k, θ) and �ve di�erent choices for n resulted

in 15 experimental cells. We simulated 50 interpurchase streams (and tabulated the corresponding

count streams) for each cell.

Order, revenue, holding, and backorder (penalty) costs were taken to be c = 50, r = 80, h =

5, and b = 15 respectively. The discount factor was α = 1.0. In the case of zero delivery lag, the

parameters (k, θ) = (.5, 40), (1, 20), and (2, 10) corresponded to optimal theoretical base stock

levels of 38, 33, and 31 respectively. Mean absolute deviations from these theoretical base stock

levels for the four �tted distributions are given in Table 4.

Observe that the tBISA-C and the tBISA-I both outperform the lognormal distribution (lower

mean absolute deviation in 14 out of 15 pairwise comparisons). The tBISA-I is superior in smaller

samples, especially in cases of over- or under-dispersion. This result is probably due to higher

precision in the tBISA-I's estimation from interpurchase data with approximately T/µ times as

many observations as the count data stream. The tBISA-C is superior in larger samples, especially

in cases of over- and equi-dispersion. Overall, our results demonstrate that the tBISA, �t to count

data or interpurchase data, is a competitive alternative to the lognormal.

The normal distribution was consistently better than all competing distributions in the case of

equi-dispersion. This is not so surprising given that (k, θ) = (1, 20) corresponds to exponential

interpurchases and implies Poisson distributed counts; the normal distribution is known to approx-

imate the Poisson well. Indeed, in their inventory analysis, [6] found almost no di�erence between
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n k θ Normal Lognormal tBISA-C tBISA-I

10 0.5 40 4.02 4.74 4.1 2.46
10 1 20 1.88 2.16 1.86 1.52
10 2 10 1.22 1.34 1.3 1.04
25 0.5 40 2.56 2.1 2.14 1.46
25 1 20 0.94 1.44 1.12 1.36
25 2 10 1.08 1.14 1.1 0.7
50 0.5 40 2.04 1.62 1.44 1.24
50 1 20 0.7 1.38 0.84 1.22
50 2 10 0.64 0.76 0.64 0.4
100 0.5 40 1.68 1.54 0.88 1.12
100 1 20 0.46 1.08 0.68 1.12
100 2 10 0.42 0.56 0.54 0.22
200 0.5 40 1.56 1.36 0.74 1.16
200 1 20 0.28 1.28 0.78 1.16
200 2 10 0.3 0.38 0.34 0.12

Table 4: Mean absolute deviations, zero period lag (averaged over 50 simulated data streams)

the inventory policy obtained from �tting a normal distribution to simulated Poisson demand data

and the inventory policy obtained from �tting a Poisson distribution to the same data. The normal

does not fare well against the tBISA in cases of under- and over-dispersed count data, however.

This gap is particularly large compared to the tBISA-I in cases of over-dispersion or small n.

To determine whether these patterns persist in more complex dynamic inventory formulations

and to demonstrate the additive properties of the tBISA, we repeated the experiment while incor-

porating a two-period delivery lag. This required solving (42). The simulated data streams were

identical to those used in the experiment with zero delivery lag. The optimal theoretical base stock

parameters corresponding to (k, θ) = (.5, 40), (1, 20), and (2, 10) are 85, 81, and 78, respectively.

The mean absolute deviations are given in Table 5.

The dominance of the tBISA-C over the lognormal is somewhat diminished, but the case for the

tBISA-I over the lognormal remains fairly strong. It is superior to the lognormal in 12 out of 15

cells, and it is very close in the remaining three. Recall also that there is no closed-form expression

for the sum of lognormal random variables, so we must use iterated integrals in our calculations for

this distribution (see equation 42). The tBISA-I again outperforms the normal in all cases of over-

and under-dispersion; it is slightly outperformed by the normal in three cases of equi-dispersion.

These results suggest the tBISA is a good alternative to both the normal and lognormal in many

practical situations.

6. CONCLUSIONS AND EXTENSIONS

We have proposed the tBISA as a candidate distribution for the modeling of count data. The

tBISA distribution has several appealing properties: it can be estimated from count data or from
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N k θ Normal Lognormal tBISA-C tBISA-I

10 0.5 40 5.9 6 5.88 4.92
10 1 20 3.4 3.46 3.66 3.34
10 2 10 2.82 2.7 2.62 2.68
25 0.5 40 4.14 3.94 4.72 3.54
25 1 20 1.8 1.82 2.02 1.88
25 2 10 2.3 2.26 2.04 1.94
50 0.5 40 2.9 2.96 3.86 2.38
50 1 20 1.44 1.44 1.54 1.42
50 2 10 1.94 1.88 1.44 1.32
100 0.5 40 2.04 1.92 2.72 1.78
100 1 20 0.88 0.92 1.24 1.04
100 2 10 1.6 1.56 1.3 0.92
200 0.5 40 1.72 1.6 2.4 1.3
200 1 20 0.82 0.84 0.96 0.9
200 2 10 1.6 1.54 0.96 0.56

Table 5: Mean absolute deviations, two period lag (averaged over 50 simulated streams)

interarrival data (the latter being particularly appropriate when the count data are censored); it

can be used in situations with limited count data observations; it can be adjusted to di�erent time

intervals without collecting additional data; and it has analytic properties that make it tractable in

many applications, particularly those involving the cdf or sums of random variables.

One limitation of our development is that we consider only cases where the count is incremented

one unit at a time. For cases in which the count increment exceeds one (group arrivals or multiple

counts per arrival) a signi�cant proportion of the time, our analysis must be modi�ed. In the

simplest case of group arrivals, suppose arrivals are either �singles� (a single arrival) or �pairs� (two

simultaneous arrivals). One could then measure the interarrival time between singles (ignoring all

pairs) and the interarrival time between pairs (ignoring all singles). Let µ1 and σ1 represent the

mean and standard deviation of the interarrival distribution for singles, and let X be the number

of singles arriving during [0,T ]. Let µ2 and σ2 represent the mean and standard deviation of the

interarrival distribution for pairs, and let Y be the number of pairs arriving during [0,T ]. Then the

count would be X+2Y units. If Y is a BISA random variable then so is 2Y (see [9]). However,

2Y has a BISA distribution (4) with parameters µ = µ2/2, and σ = σ2/
√

2. Thus, to calculate the

density for X+2Y using Theorem 3, we would need property 1 to hold, which in this case means

v = σ1/µ1 =
√

2σ2/µ2. This condition is less intuitively appealing than that for X + Y , and so

Theorem 3 may be more applicable to systems in which each arrival increments the count by one

unit. Using a similar approach, the model can be extended to cases in which an arrival generates

multiple counts.

There are many possible extensions of this research. One would be to introduce covariates in

the estimation of tBISA parameters. A second would be to address the small sample properties of

the tBISA as compared to the lognormal, normal, Poisson, and other candidate distributions. A
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third extension, to address nonstationarity in the interarrival distribution, would be to partition

the interarrivals into distinct groups or segments. For example, interarrivals times during di�erent

parts of the day (e.g., daytime versus nighttime), di�erent days-of-the-week (e.g., weekday versus

weekend), or di�erent seasons of the year could be partitioned and their respective count distribu-

tions �t separately. Alternatively, interarrival times could be separated based on a criterion that

does not depend on time, e.g., cash customers versus credit customers (here we would measure

the time between cash purchases and the time between credit purchases). In each case, the total

demand would be the sum of counts for the di�erent groups or segments. In other applications, the

number of segments might not be known, in which case n, the number of segments, becomes a free

parameter in Theorem 3.
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A. APPENDIX

Fitting the BISA to Count Data Using the Method of Moments

Let x̄D be the sample mean for period counts and let s2D =
∑
i

(xi − x̄)2/n be the sample variance

(the denominator n is needed for the method of moments). Equating these sample moments with

those of the BISA results in the equations

x̄D =
T

µI
+

σ2
I

2µ2
I

− 1/2

s2D =
5σ4

I

4µ4
I

+
T

µI
· σ

2
I

µ2
I

(43)

from which one obtains solutions

σ2
I

µ2
I

=
2(x̄D + 1/2)

3

√1 +
3s2D

(x̄D + 1/2)2
− 1


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T

µI
=

(x̄D + 1/2)
3

4−
√

1 + 3
s2D

(x̄D + 1/2)2

 (44)

A limitation of this method is that it fails if s2D/(x̄D+1/2)2 ≥ 5, thus a di�erent estimation method

(e.g., maximum likelihood) would be required. Fortunately, this violation rarely occurs in practice,

and so the method of moments should be broadly applicable.
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